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Abstract

This research uses listing prices on StubHub, a secondary market for
sports tickets, to show that sellers have reference-dependent preferences,
affected by two types of reference points: face values and previous lowest
transaction prices within the same section of the stadium. First, I show
evidence of the bunching of listing prices at the reference points, which
is consistent with the prediction from the theoretical model. Then, I
use a structural model to estimate the parameters of the gain-loss util-
ity and simulate results for the case without reference-dependent prefer-
ences. Compared with the actual data, the counterfactual results indicate
that the listing prices for game tickets will be lower by around 19.30%
on the last day before the game if sellers have no reference-dependent
preferences. Furthermore, the probability of a typical listing being sold
increases from 0.43 to 0.48 during the last two weeks. In addition, I
use the number of listings in a season to proxy for the size of sellers,
and the results show that big sellers are less likely to be affected by the
face value than small sellers, which is consistent with the previous litera-
ture’s notion that market experience can eliminate the effect of reference
points. However, sellers of different sizes are affected by the previous
lowest transaction prices in a similar way, which suggests that market
experience might only eliminate the effects of reference points such as
the status quo, and not the effects of reference points such as recent out-
comes.
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1 Introduction

Field evidence of reference-dependent preferences has been found in many

studies (DellaVigna, 2009), but little has been shown in the online peer-

to-peer markets. These markets, such as eBay and Airbnb, provide many

innovative market design features to lower the entry costs for sellers, thereby

attracting small suppliers to enter the markets. One of the important features

of these markets is the pricing mechanism (Einav, Farronato and Levin,

2016). Nowadays, posted price mechanisms are widely used in the online

market, and platforms attempt to provide useful information to both sellers

and buyers to facilitate transactions. However, the information can play a

different role, as reference points for individuals, and thus affect the market

outcomes. This research uses the listing price data on StubHub to study how

reference points affect sellers’ pricing strategies over time.

StubHub is the most popular secondary market for sports tickets in the

United States. For each venue and game, StubHub has a different web page

with a detailed stadium map showing where the seating is in relation to

the field. This allows sellers to list their tickets easily and lets consumers

search for tickets with a clear understanding of where their seats will be.

Because all sellers need to purchase the tickets from the primary market, the

ticket information in that market, such as the face value, should be common

information for both sellers and buyers. In order to attract sellers and ensure

they can make a profit, StubHub also provides comprehensive transaction

records so that the sellers can follow the information to set up initial listing

prices and adjust those listing prices at any time before game day.
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Reference-dependent preferences come from prospect theory, which was

proposed by Kahneman and Tversky (1979). According to a reference point,

a seller has an additional gain from gain-loss utility when the transaction

price is higher than a given reference point, while the seller incurs a loss if

the transaction price is lower than the reference point. The reference point

could be backward-looking, such as the status quo or a recent outcome,

or forward-looking, such as individuals’ rational expectations (Kőszegi and

Rabin, 2006, 2007). In this research, I focus on backward-looking reference

points because they are easier to observe in the market.

To understand the effect of reference-dependent preferences, I first follow

Sweeting (2012) to construct a theoretical dynamic pricing model, which pre-

dicts that listing prices will bunch at reference points if sellers have reference-

dependent preferences. If a seller faces a loss in the last few days, the listing

prices should be higher than those determined by sellers without reference-

dependent preferences.

To verify the reference points, I focus on all the initial listing prices to

see whether there is evidence of bunching at the potential reference points,

based on the discontinuity test in McCrary (2008). Two reference points

are found in this market: face values and previous lowest transaction prices

(PLTPs) in the same section of the stadium. I also eliminate some alternative

possible explanations, such as round numbers and original purchase prices

in the primary market. The evidence of bunching is robust for these two

reference points in most of the subgroups. Only for those sellers with over

150 listings in a season does the discontinuity test suggest that they are not

affected by face values.
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Furthermore, I use a two-stage estimation method from Bajari, Benkard

and Levin (2007) to estimate the parameters of the gain-loss utility. In the

first stage, I estimate the probability of a sale on each day before the game,

the pricing strategies in each state, and the state transition matrix over

time. In the second stage, a set of structural parameters are estimated by

a simulated minimum distance method which rationalizes that the pricing

strategies from the observed data are the optimal decisions.

To quantify the effect of the reference points, I use a counterfactual ex-

ercise to simulate the listing prices under scenarios without reference points.

Compared with the actual data, the counterfactual results indicate that the

listing prices will be lower by around 19.30% on the last day before the game

if sellers have no reference-dependent preferences. Furthermore, the proba-

bility of a typical listing being sold increases from 0.43 to 0.48 during the

last two weeks.

In order to determine the heterogeneity of the sellers, I also estimate the

loss aversion parameter for sellers with different types of tickets. Those sellers

who only hold single-game tickets are less likely to be affected by the face

value than those holding package tickets or mixed types of tickets. However,

all of the sellers have a similar loss aversion parameter for the PLTPs. When

I use the number of listings in an entire season to proxy for the size of the

sellers, the results show that the big sellers are less likely to be influenced by

the face values, which is consistent with the previous literature’s notion that

market experience can eliminate the effect of reference points. However, I find

no difference between sellers of different sizes when the PLTPs serve as the

reference points. This implies that market experience might only eliminate
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the effect of reference points such as the status quo, and not those such as

recent outcomes.

The first stream of literature related to this research relates to dynamic

pricing1, investigating how firms sell perishable goods in a limited time. The

dynamic pricing models usually consider two types of consumers: myopic

(Gallego and Van Ryzin, 1994; Bitran and Mondschein, 1997) and strategic

(Su, 2007; Levin, McGill and Nediak, 2009; Deneckere and Peck, 2012; Board

and Skrzypacz, 2016). Because Sweeting (2012) shows that consumers in the

sports ticket secondary market are not strategic, I follow this assumption and

further consider sellers with reference-dependent preferences. In addition,

several previous studies combine dynamic pricing with reference points, and

show how sellers impose dynamic pricing when consumers consider previous

listing prices as reference points (Popescu and Wu, 2007; Bell and Lattin,

2000). Unlike the previous literature, however, this research focuses on how

the reference-dependent preferences of sellers affect their dynamic pricing

behavior.

This research is also linked to the literature on reference-dependent prefer-

ences (Kahneman and Tversky, 1979; Tversky and Kahneman, 1991; Kőszegi

and Rabin, 2006, 2009), both in the behavioral economics and the finance

literature. In relation to behavioral economics, this research contributes to

the field evidence of reference-dependent preferences, including that on the

labor supply of taxi drivers (Camerer et al., 1997; Farber, 2008; Crawford

and Meng, 2011; Thakral and Tô, 2019), the behavior of taxpayers in order
1Dynamic pricing is also called revenue management or yield management in the mar-

keting literature.
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to achieve a situation where no taxes are due (Rees-Jones, 2018; Engström

et al., 2015), job search behavior under unemployment assistance (DellaVi-

gna et al., 2017), marathon runners’ efforts to achieve round-number goals

(Allen et al., 2017), and housing prices (Genesove and Mayer, 2001). The

intuition of this research is very close to Genesove and Mayer (2001), who

find that sellers in the housing market tend to set higher asking prices to

prevent losses, based on previous purchase prices as the reference points. In

this research, I further provide evidence of the bunching of listing prices at

reference points, and estimate the loss aversion parameters for sellers.

In relation to finance, the literature finds that investors are more likely to

sell stocks trading at a gain relative to the purchase price than stocks trading

at a loss, which is labeled the “disposition effect” (Shefrin and Statman,

1985; Odean, 1998; Heath, Huddart and Lang, 1999; Grinblatt and Keloharju,

2001). Barberis and Xiong (2009) use the initial wealth as the reference point

to formalize this phenomenon, and show that the model predicts a disposition

effect only if the diminishing sensitivity effect overcomes the loss aversion

effect. Meng and Weng (2018) further extend the model to include forward-

looking reference points. Although the intuition of the disposition effect

is similar to this research, there is one big difference between this research

and the previous behavioral finance literature: sellers in the sports ticket

secondary market have a limited time in which to sell their tickets, leading

the predicted price trend to be downward over time (Sweeting, 2012). This

simplifies the seller’s problem, such that they are only reluctant to sell tickets

during the period close to the game day in the loss domain.

This paper makes three additions to the literature. First, to the best of
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my knowledge, my paper is the first to demonstrate evidence of the bunching

of listing prices in the online peer-to-peer market. Second, the research also

adds to the literature on structural behavior economics in estimating the

loss aversion parameters for backward-looking reference points. Third, this

article contributes to the literature related to market experience, with the

evidence in this example showing that market experience might not eliminate

all of the effects of reference points. When recent outcomes serve as reference

points, the effects still exist for those sophisticated agents.

The remainder of this paper is organized as follows. Section 2 presents

a theoretical model illustrating how reference-dependent preferences affect

pricing. Section 3 summarizes the data used in this study and shows the

descriptive evidence of reference points. Section 4 provides the details of

the structural estimation. Section 5 shows the estimation and counterfactual

results. Section 6 concludes this research.

2 Theoretical Framework

This section presents a dynamic pricing model, which follows from Sweeting

(2012) to illustrate how reference-dependent preferences affect the behavior

of sellers, and predictions from which are used for the empirical test in Sec-

tion 3. Furthermore, in Section 4, I will extend this model and make more

assumptions to estimate some important parameters.

For a given game, there are T periods, indexed by t = {1, 2, ...T}, in

which the sellers can sell their tickets, with the game starting after period T .

The sellers come into the market at different times, and during each period in
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which the number of sellers is large enough, the market power of each seller

is relatively small. Because of the heterogeneity of tickets, each seller can

decide on her own prices in each period so as to maximize expected profits. If

a ticket is not sold in period t, the seller can change the price in period t+1.

In the model, each seller is assumed to have only one ticket when entering

the market, and there is no switching cost for sellers of adjusting their price

every day.

The profit maximization problem for seller i at period t can be written

as

Vit = max
pit

ui(pit)qit(pit) + [1− qit(pit)]Et(Vit+1), t = 1, 2, ..., T, (1)

where qit(pit) is the probability of sale, for listing i at period t, given the

listing price pit. Because the quantity provided by each seller is relatively

small in the market, the probability of sale, qit(.), is assumed to be exogenous

for each seller, and can be estimated based on all the listings in the market.

Et(Vit+1) is the expected value of holding the ticket at period t + 1, which

can also be interpreted as the opportunity cost of a sale.

In the last period, T , the expected value, ET (ViT+1), can be interpreted

as the expected value of holding the ticket after the game starts. For those

sellers who can attend the game even if they cannot resell their tickets, the

remaining value of their ticket should be positive. However, for those sellers

who cannot attend the game, the remaining value may be zero. I assume

that each seller has a different remaining value of their ticket, ri, and that

the expected value in the last period should be written as ui(ri).
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The first-order condition for the profit maximization problem is

u′i(pit)qit(pit) +
∂qit(pit)

∂pit
(ui(pit)− Et(Vit+1)) = 0, t = 1, 2, ..., T. (2)

Consider a risk-neutral seller without gain-loss utility, with utility defined as

ui(pit) = pit. Then, the first-order condition can be rewritten as

pit = − qit(pit)
∂qit(pit)

∂pit

+ Et(Vit+1), t = 1, 2, ..., T. (3)

The intuition behind equation (3) is that the optimal price in the current

period is equal to the next period expected value plus the markup, which

depends on the current period demand elasticity. This is the result of the

traditional dynamic pricing model.

However, if the seller has gain-loss utility based on an exogenous reference

point, RPi, the utility can be specified as

ui(pit) = vi(pit) + ηG(pit|RPi), (4)

where G(pit|RPi) is the gain-loss utility, and η > 0 is the parameter that in-

dicates how the gain-loss utility relates to the consumption utility. Following

Post et al. (2008), G(pit|RPi) can be defined as

G(pit|RPi) =

 (pit −RPi)
α if pit ≥ RPi

(−λ)(RPi − pit)
α if pit < RPi

, (5)

where λ > 1 is the loss aversion parameter, and α > 0 represents the curva-
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ture of the gain-loss utility, reflecting the diminishing sensitivity effect.

Before jumping into the simulation, I use a simple linear example, where

vi(pit) = pit, and α = 1, to illustrate the effect of reference points. In this

example, the optimal listing price p∗it should satisfy one of the following three

cases in each period t:

- Case I. When p∗it ≥ RPi, the optimal price p∗it should satisfy the first-

order condition under the gain domain:

p∗it = −Φit(p
∗
it)

∂Φit(p∗it)

∂pit

+

(
η

1 + η
RPi +

1

1 + η
Et(Vit+1)

)
. (6)

- Case II. When p∗it < RPi, the optimal price p∗it should satisfy the

first-order condition under the loss domain:

p∗it = −Φit(p
∗
it)

∂Φit(p∗it)

∂pit

+

(
ηλ

1 + ηλ
RPi +

1

1 + ηλ
Et(Vit+1)

)
. (7)

- Case III. If the previous two cases are not satisfied, the optimal price

is binding at the reference point, that is p∗it = RPi.

The last two terms in equations (6) and (7) can be interpreted as the

“adjusted” expected value of holding the ticket in the next period, which is

a linear combination of the original expected value and the reference point.

Compared with equation (3) in the case without reference-dependent prefer-

ences, equations (6) and (7) show that the optimal listing price is affected

only through the adjusted expected values.

In Case I, the adjusted expected value could be influenced in an upward

or downward direction, based on whether the expected value, Et(Vit+1), is
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lower or higher than the reference point. As Et(Vit+1) > RPi, the adjusted

expected value and the optimal price become lower, compared to the case

without reference-dependent preferences. The seller with gain-loss utility

tends to choose a lower price to ensure the sale of the ticket when she faces

the gain domain. When Et(Vit+1) < RPi, the adjusted expected value and

the optimal price become higher because the seller wants to avoid incurring a

loss from selling the ticket. In Case II, the seller always faces the loss domain

because Et(Vit+1) < RPi, so the adjusted expected value and optimal price

are influenced upward. In addition, the seller has a high chance of falling

into Case III, so the bunching of listing prices at the reference point should

be expected from the model.

The simulation result is based on a time-invariant probability of sale,

qit(pit) = Φ(−pit), where Φ(.) is the standard normal cumulative distribu-

tion function. For those sellers with the gain-loss utility, I assume that the

consumption utility vi(pit) = log(pit), the gain-loss parameter η = 1, the loss

aversion parameter λ = 2.25, and the curvature of the gain-loss utility α = 1.

To create heterogeneity of sellers, I assume that the remaining values of their

tickets, ri, follow a chi-squared distribution χ2(0.5). The reference point is

assumed to be 1. In Section A.1 of the appendix, I provide sensitivity tests

of the important parameters. Figure 1 shows the simulated listing price dis-

tribution. For those sellers without reference-dependent preferences (η = 0),

the listing prices (blue hollow ones) truly reflect the distribution shape of the

remaining values. However, for those sellers with reference-dependent pref-

erences, the listing prices (orange) clearly show evidence of bunching at the

reference point. Instead of choosing a listing price lower than the reference
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point and thus suffering a loss, such sellers are more likely to set their listing

prices at least higher than the reference point.

To further understand the listing price pattern over time, I simulate two

sellers with the same remaining value, 0.01. Figure 2 shows the simulated

price pattern over time. The blue solid line with circles shows the listing

price pattern chosen by the seller who does not have reference-dependent

preferences (η = 0), while the orange dashed line with asterisks indicates

that chosen by the seller with reference point equal to one. Compared with

the blue line, the listing prices on the orange line are higher in the last six

days before the game, because that seller faces a loss domain over the last

few days, and the listing prices are stuck at the reference point during the

7-9 days prior to the game.

To sum up, two predictions are generated by the theoretical model:

Prediction 1. If sellers have reference-dependent preferences, the listing

price distribution should show evidence of bunching at the sellers’ reference

points.

Prediction 2. Compared with the listing prices chosen by a seller without

reference points, those chosen by a seller with reference-dependent preferences

should be higher in the last few days, in the loss domain.

In the next section, I will use the data to show that Prediction 1 holds

for some potential reference points. However, it is not easy to show evidence

of Prediction 2 because sellers without reference points may not exist in the

market. Instead of showing that Prediction 2 holds, I will directly estimate

the parameters in the gain-loss utility and use a counterfactual exercise to
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quantify the effect of reference points during the last few days prior to a

game.

3 Data and Descriptive Evidence

This section describes the data used in this research, which I will use to show

evidence of bunching at two types of reference points: the face value of each

ticket, and the PLTPs within the same section of the stadium.

3.1 Data

The data in this study consist of three parts: the listing data on StubHub

for one particular Major League Baseball franchise’s home events in 2011,

the transaction data for those home events on StubHub, and the purchasing

information in the primary market2

The listing data were collected from the StubHub website daily during

the period from March 25, 2011 to September 30, 2011, and included all

the information shown for consumers on the website, such as the listing

price, section number, row number, and seat number. Because each listing

was obtained from the website daily, the initial listing price and each price

adjustment can be observed from the data.

In the listing data, the disappearance of an available listing is not equiv-

alent to a purchase, since sellers on StubHub can relist tickets with different

listing identification numbers; therefore, the transaction data on StubHub

are used to identify purchases within the listing data. Most of the purchased
2The last two sets of data were provided by an anonymous company.
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listings in the sample can be matched to detailed transaction information,

such as the transaction time, price, quantity, and seat information.

In addition, the listing data alone are not enough to identify sellers be-

cause StubHub hides such information. Therefore, the purchasing data in the

primary market are used to identify the sellers, because all tickets are sold

initially by the franchise3. Primary market transaction data include compre-

hensive purchase information, including type of ticket, purchase price, ticket

characteristics, purchase date, and buyer identification number. Based on

the buyers’ IDs, the number of tickets bought over the entire season can be

calculated. Besides the purchasing information, how many listings they have

on StubHub can also be identified. However, not all listings contain detailed

seat information, such as row and seat numbers, so for only around 71.9% of

listings can I identify the seller. In the following analysis, I focus on those

listings for which information on the seller is available.

Table 1 shows the summary statistics for the information from the listings

on StubHub, including the listing price, starting date, original purchase price

in the primary market, face value, sold status, and other ticket characteristics.

I have excluded some of the listings with extremely high listing prices4. The

remaining sample contains 103,245 listings for 81 home events, with around

1,300 listings for each game.

Sellers on StubHub can adjust the listing price easily at any time, so

that the observed daily listing price might change over time for one listing.

Table 1 reports summary statistics for the initial, maximum, minimum, and
3I assume that tickets are not resold or transferred in other secondary markets.
4Those listings with prices exceeding $999 or 9 times the face value are excluded.
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average prices of each listing, relative to the face value. Because sellers tend

to set higher prices in the beginning and lower the price as the event date

approaches, the average initial listing prices is 1.68 times the face value5.

The average maximum price (1.82) and average minimum price (1.31) are

both greater than one. Regarding the timing of listing, most sellers tend

to list their tickets well in advance of the event. Around 34.3% of listings

are listed more than one month prior to the event, while 29.6% are listed

two weeks ahead. The starting dates are strongly correlated with the initial

listing prices, probably because different start times might be associated with

sellers with different opportunity costs.

Because the prices for season tickets or group tickets are cheaper than

the face value, the average original purchase price is 0.84 of the face value,

lower than 16. Table 1 also presents ticket characteristics related to quality,

including the distance from the seat to the home plate7, a front row dummy,

and a row quality measure. Row quality is a normalized measure that quan-

tifies the row number. A value of one represents the first row in a given

section, while a value of zero represents the last row in that section. The

listing period and number of price adjustments vary based on the observed

periods for different events. The average listing period is about 38 days, and

the sellers adjust their listing prices around twice for each listing. Since each
5Because I started to collect the listing data on March 25, 2011, I cannot observe the

initial listing prices for those with starting dates before then. Around 80% of the initial
listing prices can be observed.

6The maximum purchase price in the primary market is 1.29 of the face value, which
is because around 1.8% of the listings in the data have original purchase prices greater
than the face value, i.e. a relative value greater than 1. It seems that those prices might
be adjusted a little bit in the primary market.

7This variable does not vary within the same section. I only calculate the distance from
the seat to the home plate by section.
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listing has many tickets (seats), a seller can sell them separately in many

ways. On average, 39% of listings are sold out before the event, and around

40.6% of listings are sold partly during the period observed on StubHub.

Based on the primary transaction data, the total number of identified

sellers is 9,664. Table 2 shows the summary statistics for all the identified

sellers. In the primary market, two main types of tickets can be purchased:

single-game tickets, and package tickets8. The prices for the single-game and

package tickets in the primary market are different. People can purchase

single-game tickets for any particular game, but package tickets are only de-

signed for multiple games. People with different needs can purchase different

types of tickets. 38.3% of sellers only purchase the single-game tickets in the

primary market; 39.7% of sellers only buy the package tickets. The remain-

ing 22% of sellers buy both types. Besides the types of tickets they buy, the

sellers can also use different channels to buy their tickets. 44.2% of sellers

purchase only through the website, and 41.9% only from the box office. Dif-

ferent purchase channels could represent different opportunity costs of sellers

reselling their tickets.

In addition to the purchase information in the primary market, the listing

and transaction data on StubHub indicate how many tickets the sellers tend

to sell to in the secondary market. The average number of listings a seller

makes in the entire season is 11.59, with around 34.89 tickets sold per seller.

Some sellers will only make one listing in a year, but some will make many.

To understand the behavior of heterogeneous sellers, I will use the types of
8In the data, a small proportion of other types of tickets were sold, such as group

tickets. In the following analysis, I will only look at the two main types of tickets.
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tickets they hold and the number of listings they make in a season to create

subgroups for analysis.

3.2 Evidence of Bunching at Face Values

According to the lab experiment reported in Baucells, Weber and Welfens

(2011), a combination of the first and the last price of a time series is the best

estimate of a reference price for those data. However, in my data, I did not

find evidence of bunching at the purchase price in the primary market. One

reason could be that most of the sellers purchased multiple tickets at some

kind of discount, such as package tickets, making the purchase price for one

ticket somewhat irrelevant. Even focusing on those sellers who purchased

single-game tickets in the primary market9, the evidence of bunching is not

very clear. Therefore, instead of the purchase price in the primary market,

the face value could more naturally serve as the reference point for these

sellers. This subsection presents the evidence of the bunching of listing prices

at the face values of the tickets. I look only at the initial listing price for

each listing in this subsection10

Figure 3 presents the frequency distribution for the initial listing prices

relative to the face values, and clearly shows evidence of bunching at one.

This implies that a seller tends to choose a listing price higher than the face
9Because the purchase price in the primary market is equal to the face value in this

case, both could be the potential reference point if evidence of bunching existed.
10There are two reasons to focus on the initial listing, instead of each price adjustment

during the listing period. First, the average number of price adjustments for one listing
is around 1.8, so most sellers do not change their listing price too often. Second, the
price adjustments could also reflect the switching cost for the sellers. To avoid mixing the
effect of reference points with other effects, I use the initial listing prices for the following
analysis. In fact, though, there exists evidence of bunching for all the price adjustments
as well.
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value, instead of a listing price lower than the face value. The bottom figure

displays the results of the discontinuity test provided in McCrary (2008).

The z-statistic of the test is 35.5, as shown in the last column of Table 3.

The percentage of listings with a listing price in [1, 1.1) is 8.45%, much larger

than the percentage with listing prices in [0.9, 1), of only 4.58%

To further understand the evidence of bunching across different sub-

groups, I use various pieces of the listing information, such as the number

of tickets in a listing, the starting date, the month of the game, and the

face value, to split the sample. The results are very robust across the sub-

groups. Besides the listing information, I also use information about the

sellers, such as the types of tickets, number of listings, and purchase chan-

nel, to create subgroups. The results show that sellers who only purchase

single-game tickets in the primary market tend to exhibit weaker (but still

significant) evidence of bunching, which suggests that those sellers are less

affected by the face value. This may be because they did not intend to resell

their tickets when they purchased them in the primary market, making them

quite different from other sellers in the secondary market. The other sellers,

such as those holding package tickets or mixed ticket types, seem to be more

affected by the face value.

In addition, I use the number of listings to proxy for the size of the seller.

For sellers with more than 150 listings in a season, the discontinuity test is

insignificant, which suggests that those big sellers are not affected by the face

values of the tickets. This supports the previous literature, which has found

that sophisticated sellers tend to be little affected by reference points (List,

2003). However, the evidence of bunching is very robust for the sellers with
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less than 150 listings in a season.

One possible explanation for the face values being the reference points

could be the round number effect (Allen et al., 2017), because some of the

face values end with a round number, such as 0 or 5. Indeed, I find that

round numbers play an important role in listing prices, with many sellers

choosing initial listing prices ending with 0 or 5. To further check whether

the evidence of bunching is only due to the round number effect, I split the

sample into two groups: one with face values ending in 0 or 5, and the other

with face values ending in other numbers. Figure 4 shows that both groups

exhibit clear evidence of bunching at one, which suggests that the listing

prices are still affected by the face values even when the round number effect

is eliminated. The bottom panel of Table 3 shows the z-statistics of the

discontinuity test for these two groups.

To further show that this bunching effect is not driven by the purchase

price in the primary market, I again split the sample into two groups: one

with face value equal to the purchase price in the primary market, and the

other with face value not equal to the original purchase price. Figure 5 shows

that the evidence of bunching is most driven by those listings with face value

different from the purchase price in the primary market. This indicates that

sellers are more likely to be affected by the face value than the purchase price

in the primary market, which is different from the disposition effect whereby

people usually use the purchase price to measure their gains and losses in the

financial market.
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3.3 Evidence of Bunching at the Previous Lowest Trans-

action Price

The previous literature also indicates that recent outcomes could be potential

reference points, such as recent income being reference points for a job search

in DellaVigna et al. (2017). Also, StubHub provides comprehensive trans-

action records that sellers can use to determine their listing prices, meaning

that historical prices could also serve as reference points for sellers. Because

transaction prices are on average decreasing in the secondary market over

time, the PLTP could be the highest value a seller is like to obtain for a

ticket in the future. Therefore, a seller could feel a sense of gain if she can

sell the ticket at a price higher than the PLTP; otherwise, she might ex-

perience it as a loss. In this subsection, I will use the PLTPs within the

same section of the stadium as the reference points and test for evidence of

bunching.

Since the PLTPs differ quite widely for the listings, I divide the listing

prices by the PLTPs to test for evidence of bunching. Figure 6 shows clear

evidence of bunching in the listing prices at one. The bottom figure displays

the results of the discontinuity test from McCrary (2008), and all the test

statistics are shown in Table 4. As in the previous subsection, I check the

evidence of bunching for different subgroups, based on the listing and sellers’

information, and find the results to be robust across all the subgroups. Even

for those sellers with more than 150 listings in a season, the clear evidence of

bunching indicates that the big sellers are also affected by the PLTPs. One

possible reason is that all sellers might observe the historical transaction
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prices before deciding on their listing prices, so that the PLTPs serve as

significant reference points for them.

To further understand the effect of the PLTPs on sellers over time, I split

the sample into two groups: one with PLTPs higher than the face value,

and the other with PLTPs lower than the face value. The first case usually

happens early in the period, and the second case in the last few days before

the game. Figure 7 and the bottom panel of Table 4 show that both cases

exhibit clear evidence of bunching, which suggests that the PLTPs have an

effect throughout the entire period.

To sum up the results from these two subsections, the face values and

the PLTPs might serve as important reference points that affect the pricing

decision of the sellers. In the next section, I will add some assumptions to

the previous theoretical model and develop a structural estimation method

to estimate some important parameters, such as the loss aversion parameter.

4 Estimation

In this section, I will use the model from Section 2 and make some reasonable

assumptions for the following estimation. First, I assume that each seller is

relatively small, which means that sellers do not interact directly with other

sellers. Therefore, the maximization problem over time for a seller can be

treated as a single-agent finite period dynamic problem. Since the listing

price is a continuous decision for the seller, I use the estimation method

developed by Bajari, Benkard and Levin (2007) to estimate this structural

model.
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To simplify the estimation period, I only use the last two weeks before the

game for the estimation. Each seller comes into the market 14 days before

the game, and they know the remaining value of their tickets for themselves

before determining the initial listing prices. The remaining values of the

tickets, ri, are assumed to follow a chi-squared distribution, χ2(ν). Based on

the remaining value of a ticket, each seller can decide the optimal price to

set for it in each period before the game. I assume that there is no switching

cost, so sellers will adjust their listing prices every day.

The state variables s include three elements: the demand conditions, s1,

in the market, the number of days before the game, s2 = {14, 13, ..., 1},

and the listing status, s3. I will introduce s1 later, in Subsection 4.2. The

listing status, s3, is binary and indicates whether the listing is still posted on

StubHub, so s3 = 0 when the listing has been purchased and has disappeared

from the market.

The estimation method consists of two stages. In the first stage, I estimate

the probability of sale qit(pit) for each state, the state transition matrix, and

the pricing function conditional on each state for a specific group of the

sellers. In the second stage, I use a minimum distance estimator to find a

set of structural parameters which can rationalize that the observed listing

prices are optimally chosen.
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4.1 Probability of Sale

In order to estimate the probability of sale for each listing, I specify a probit

model as follows:

y∗it = β0 − β1pit + Xitγ + ϵ1it, (8)

pit = XitΠ1 + ZitΠ2 + ϵ2it, (9)

where yit = 1{y∗it ≥ 0} represents the sale of a listing, and Xit includes the

listing characteristics and competition variables used to control the demand

equation. However, the prices set by sellers might be correlated with some

unobserved demand shock, ϵ1it, so equation (9) is needed to specify a cost-

based shock to solve the endogeneity problem. The error terms ϵ1it and ϵ2it

are jointly distributed according to a joint normal distribution:

 ϵ1it

ϵ2it

 ∼ N


 0

0

 ,

 1 ρσv

ρσv σ2
v


 , (10)

where ρ is the parameter used to specify this endogeneity problem. If ρ = 0,

there is no endogeneity problem and for the demand estimation I only need

the traditional probit model. However, if ρ ̸= 0, the endogeneity problem

arises, I use the control function approach to first estimate equation (9), and

then I include the residuals from the first stage in equation (8) to estimate

the probit model.

Besides the endogenous listing price variable in equation (8), Xit include

two sets of variables: quality-based characteristics of listings and competition
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variables for demand estimation. The quality-based characteristics include

the distance from the seat to the home plate, the row quality, seat area dum-

mies, the row quality×the seat area dummies, game dummies, the number

of days until the game, and dummies for the number of tickets in one listing.

The variables related to the quality of the tickets may not only affect how

the sellers decide on their prices but also the consumers’ demand.

The competition variables in Xit need to be controlled because they are

correlated with the sellers’ listing price decisions. I control the dummy to

determine whether competing listings exist11, the number of competing list-

ings, the mean prices for competing listings, the proportion of listings with

higher row quality, whether a listing has the lowest price, and the proportion

of listings with lower prices.

To solve the endogeneity problem, the instrumental variables Zit in equa-

tion (9) need to be correlated with the listing prices but not with the un-

observed demand shock in uit. I use three sets of instruments: the types of

tickets the sellers have, the timing of the listings, and the purchase channel

used in the primary market. Sellers with different types of tickets might have

different considerations when reselling their tickets. Meanwhile, the timing

of listings and the purchase channel used could reflect the seller’s opportunity

cost. These three factors could affect their pricing decisions, but should not

be correlated with the unobserved demand shock.

Table 6 presents the regression on all the instruments. I also include all

the characteristics Xit in this equation. The overall F-statistic for all the in-
11I define competing listings as those for the same event, in the same section, on the

same date, and with the same number of tickets.
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strumental variables is greater than 10, which indicates that there is no weak

instrument problem in the first stage. Table 5 shows the estimates for the

probability of sale. Column 1 presents the results for the traditional probit

model with exogenous listing prices; Column 2 shows those for the instru-

mental variable probit model estimated using the control function approach.

If the unobserved demand shock is ignored, the coefficients on the listing

prices obtained from the probit model have positive bias. After obtaining

the unbiased estimates {β̂0, β̂1, γ̂}, I can write the estimated probability of

sale as Φ(β̂it − β̂1pit), where Φ(.) is the standard normal cumulative distri-

bution function, and β̂it is defined as β̂0 + Xitγ̂.

4.2 Discretizing the State Space and Estimating the

State Transition Matrix

In fact, the demand condition s1 should include a lot of information about

the market, such as the game, section, and row information. To simplify the

estimation procedure, I directly discretize β̂it to represent the state variable

s1. The range of β̂it is between -2 and 1, so the state variable is defined as

s1 = {−2,−1, 0, 1}.

The state transition matrix Prob(s′|s) is assumed to be

Prob(s′1|s1, s′2)× Prob(s′2|s2)× Prob(s′3|s3),

where s′2 = s2 − 1 with certainty, and Prob(s′3|s3) can be obtained using the

estimated probability of sale in the previous subsection. Prob(s′1|s1, s′2) can

be directly estimated based on the discrete predicted data from β̂it.

26



4.3 Estimating Pricing Strategies by State

The optimal listing price p∗it(s, ri) is a function of the state variable and the

remaining value of the ticket. Let F1(pit|s) denote the probability that seller

i chooses a listing price less than or equal to pit in state s. Based on the

monotone choice assumption that the optimal pricing function p∗it(s, ri) is

increasing in ri, which is reasonable in this model, the pricing function can

be written as

p∗it(s, ri) = F−1
1 (F2(ri|s; ν)|s),

where F2(.) is the chi-squared cumulative distribution function. F1(.) could

be directly estimated nonparametrically from the data. For the baseline

estimation, I use the whole sample to estimate the pricing strategies. In the

subgroup analysis, a certain group of sellers are selected for the estimation.

4.4 Estimating the Parameters in Utility Function

In the second stage, I simulate N listings (i = 1, 2, ..., N) based on the

estimated state transition matrix, estimated optimal pricing function, and

the random draws for the remaining values. For each listing i, I simulate

K times (k = 1, 2, ..., K). In equation (4), I assume that η = 112, and

vi(pit) = log(pit). Also, I assume that the gain-loss utility is as in equation

(5). Although ν is the unknown parameter in the distribution of remaining

values, it might not be identifiable from the estimation13. Therefore, I assume
12Based on the previous literature, it is difficult to identify this parameter.
13I will explain this later, in Subsection 4.5.
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ν = {0.2, 0.4, 0.6, 0.8} for the estimation, so that only two parameters, (α, λ),

need to be estimated in the second-stage structural estimation.

Given the parameters (α, λ), the value function14 for each period t in

simulation k can be calculated by moving backwards from the last period:

Vitk(p
∗
it(rik), α, λ) = u(p∗it(rik);α, λ)q̂it(p

∗
it(rik))

+ [1− q̂it(p
∗
it(rik))]Vit+1k(p

∗
it(rik), α, λ), (11)

where ViT+1k = u(rik), and p∗it(rik) is the estimated optimal pricing function

in each state, based on the remaining value rik. From K simulations, we have

V̄it(p
∗
it, α, λ) =

1

K

K∑
k=1

Vitk(p
∗
it(rik), α, λ). (12)

The values for any other alternative pricing function p̃it(sik) should not be

optimal, so we have

V̄it(p
∗
it;α, λ) ≥ V̄it(p̃it;α, λ).

Define a function

gith(ψ) = V̄it(p
∗
it;α, λ)− V̄it(p̃it(h);α, λ) ≥ 0,

where ψ = (α, λ), and p̃it are arbitrary price disturbances from the optimal

pricing function. I take H alternative pricing function (h = 1, 2, ..., H) for

each listing in each period. Because the pricing function estimated from the
14I simplify the notation for the state variables.
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data is treated as optimal, gith(ψ) should be non-negative. Define another

function

Q(ψ) =
1

HNT

H∑
h=1

N∑
i=1

T∑
t=1

(min {gith(ψ), 0})2, (13)

and then the estimator ψ̂ is chosen to minimize the objective function Q(ψ).

In the baseline estimation, I choose N = 100, T = 14, K = 50, and H = 50.

4.5 Identification

It is plausible to identify both the mean remaining value ν and the loss

aversion parameter λ in this model. Section A.1 shows that a seller with a

larger λ tends to determine a higher listing price on the last day before the

game; however, a higher remaining value for a seller can have the same effect

on the listing price. In the structural estimation, I choose some reasonable

values for ν, and estimate the loss aversion parameter λ directly. Since a

reasonable value for the mean remaining value ν is between 0 and 1, I choose

four values, 0.2, 0.4, 0.6, and 0.8, for the estimation. A higher remaining

value is expected to produce a lower estimate of the loss aversion parameter.

Based on the sensitivity test, described in Section A.1, the loss aversion

parameter λ and the diminishing sensitivity parameter α play different roles

in the structural estimation. First, a seller with a larger loss aversion pa-

rameter λ is more likely to choose a higher listing price on the last day to

prevent a loss, but the diminishing sensitivity parameter α does not have the

same effect.

Second, these two parameters create bunching in different ways. The
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listing prices chosen by a seller with a larger λ stick to the reference point

during more of the periods, which creates more significant bunching at the

reference point. On the other hand, the diminishing sensitivity parameter

α creates curvature in the gain-loss utility, so that a seller tends to adjust

their listing price slowly when the listing price is close to and larger than

the reference point. Also, based on the convexity of the utility function over

the loss domain, a seller will be averse to choosing a listing price close to

and lower than the reference point. Therefore, a higher α can produce more

listing prices in the gain domain, instead of the loss domain. To sum up, both

the loss aversion parameter λ and the diminishing sensitivity parameter α

can be identified in this model.

In addition, DellaVigna et al. (2017) indicate that the estimates could be

imprecise if the parameters η and λ are both estimated in the model. Since

I face the same issue of estimating two parameters, I directly set η = 1 to

avoid the problem. Therefore, in the structural estimation, I only estimate

the loss aversion parameter λ and the diminishing sensitivity parameter α,

based on different values of ν.

5 Estimation Results

In this section, I first present the results of the structural estimation, in-

cluding the estimates of the loss aversion parameter and the diminishing

sensitivity parameter. Then, I use a counterfactual exercise to show the ef-

fect of the reference points. In the last subsection, I focus on different groups

of sellers to investigate how the reference points affect their listing behaviors
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in different ways.

5.1 Benchmark Estimates

Table 7 shows the results of the structural estimation across different means

of the remaining values ν. In the top panel, sellers are assumed to treat

the face values of the tickets as the reference points, while the PLTPs are

assumed to be the reference points in the bottom panel. For a larger ν,

the estimation results show a smaller loss aversion estimate and a larger

diminishing sensitivity estimate, generating weaker bunching.

To further understand which values of ν might be the most reasonable

to assume, I simulate predicted listing prices based on the estimates and

compare them with the actual data. Figures 8(a) and 9(a) show how the

models using different values of ν fit the actual data. In both cases, the

listing prices are relatively higher when the mean of the remaining values is

higher, because sellers have higher opportunity costs after the last day. In

the case where the face values are the reference points, the predicted pattern

under ν = 0.6 gives a better fit than the others. However, in the case where

the PLTPs are the reference points, the actual data lie between the patterns

predicted under ν = 0.4 and ν = 0.6. If the estimates based on ν = 0.6 are

chosen, then the predicted listing prices are overestimated during the earlier

periods, such as 8-14 days before the game. For convenience in the following

analysis, I pick ν = 0.6 as the benchmark, including in the subgroup analysis.

Figures 8(b) and 9(b) show clear evidence of the bunching of listing prices

at the reference points.
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Based on a mean remaining value of ν = 0.6, the loss aversion estimates

λ̂ under these two cases are 4.62 and 3.68, which are close to the estimates

in the previous literature15. The magnitude of λ represents sellers’ aversion

to a loss when selling tickets. The diminishing effect estimates are 0.44 and

0.47, which shows the concavity and convexity of the utility function in the

gain and loss domains, respectively.

5.2 Effects of Reference Points

If sellers do not have reference-dependent preferences, the listing price dis-

tribution will not show any evidence of bunching at any value. A seller will

then be more likely to choose a listing price lower than the face value or the

PLTP. Therefore, in the counterfactual exercise, lower listing prices will be

expected in the market, which could result in more listings being sold. To

quantify the effects of the reference points, I set the parameter η to zero

and simulate the listing price pattern and distribution in the counterfactual

exercise16. The results are shown in Figures 10 and 11.

Compared with the actual data (shown in orange), Figures 10(a) and

10(b) show that there is no evidence of bunching (in blue) at the face values

or PLTPs. The blue line with the circles in Figure 11(a) shows the aver-

age listing prices simulated in the counterfactual exercise. On the last day,

the average listing price in the scenario without reference points is around

0.92, lower than that in the actual data, of 1.14. The effect of the reference
15In the previous literature, it is suggested that the loss aversion parameter λ takes

a value of 2.25 (Tversky and Kahneman, 1992). DellaVigna et al. (2017) obtain a loss
aversion estimate of 4.54.

16When η = 0, both cases are identical because sellers no longer have reference-
dependent preferences.
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points on the last day’s listing prices is around −19.30%, which is the biggest

negative effect over the period.

Although the two types of reference points affect the listing prices through

different mechanisms, both results show that the effect becomes larger as the

game day approaches. When the face values of tickets serve as the reference

points, the effect becomes larger due to the bigger loss that will be incurred

in the last few days. Therefore, on the last day, the seller faces their biggest

loss in the market, such that the gap between the actual listing prices and

the simulated listing prices is the largest on that day.

However, when sellers treat the PLTPs as reference points, this effect

can be further decomposed into two separate parts. The first comes directly

from the reference points, the PLTPs. Because sellers are reluctant to sell

tickets below the PLTPs, the listing prices are relatively higher. The second

part is indirectly generated by the dynamic pattern. Because of the higher

listing prices in the previous period, the PLTPs are also higher. In the

counterfactual analysis, I can further distinguish these two effects. First,

I simulate the listing prices in the scenarios without reference points, and

then I further simulate the transaction prices based on the probability of

sale in each period. Using the counterfactual PLTPs as the reference points,

I can simulate the listing prices based on the estimates of the parameters,

which provides the direct effect of the reference points. On the last day, the

average simulated listing price generated only by the direct effect is around

0.98, which is around −14.28% lower than that in the actual data, showing

that most of the effect stems from the direct mechanism.

Because of the lower listing prices, the probability of sale also increases
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for all the listings on each day, as shown in Figure 11(b). The effect of the

reference points on the probability of sale becomes larger as the game day

approaches, because more listings are affected on the last day. Considering

the dynamic effect over time, the simulation result shows that a typical listing

has a probability of 0.48 of being sold during the last 14 days, which is higher

than the probability calculated from the real data, of around 0.43.

5.3 Heterogeneous Sellers

Since this structural estimation can be applied to a specific group of sellers17,

I split the sample into several subgroups based on the different features of the

sellers, so as to investigate the heterogeneous behavior of sellers. In addition,

the sellers are affected by the two types of reference points in different ways.

First, I consider the types of tickets the sellers have, which might represent

different motivations for the sellers in the secondary market. Those sellers

holding single-game tickets are probably reselling their tickets because they

are unable to attend the game, as they would be unlikely to purchase single-

game tickets in the primary market if their aim was to resell their tickets for a

profit. Therefore, the motivation for those sellers holding single-game tickets

will be quite different to that of the sellers holding package or mixed tickets,

which would have had cheaper prices in the primary market. Table 8 shows

that sellers who only hold single-game tickets are less likely to be affected by

their face values than those holding package tickets or mixed ticket types. It

is surprising that they are affected less even though most of them would have
17The number of listings needs to be large enough for the optimal pricing function to

be estimated in each state in the first stage.
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purchased their tickets at the face value in the primary market. Those sellers

holding package tickets only are most affected by the face value. However, all

sellers are affected similarly by the other type of reference point, the PLTPs.

In addition, I use the number of listings made in an entire season to proxy

for the size of the seller. Big sellers post a lot of listings during a regular

season, while small ones might only post one or two listings. I split the

listing data into four groups, Q1, Q2, Q3, and Q4, based on the quartiles of

the number of listings per seller. The first comprises small sellers with fewer

than 8 listings in an entire season. The second and third groups contain

sellers with between 8 and 24, and between 24 and 61 listings in a season,

respectively. The fourth group contains the big sellers, with more than 61

listings in a season. The top panel in Table 9 shows that the big sellers, in the

fourth group, have the smallest loss aversion parameter of λ̂ = 2.97, which

suggests that sophisticated sellers might not be as affected by the face values

of the tickets as inexperienced sellers are. This is consistent with the previous

literature (List, 2003), which finds that market experience can eliminate the

effect of reference points. According to the descriptive evidence provided in

Subsection 3.2, I further focus on those big sellers with more than 150 listings

in a season. The result, presented in the last column, shows that the loss

aversion parameter is only 1.87, which is the smallest across all of the groups.

More interestingly, the bottom panel of Table 9 shows that there is no

market experience effect when it comes to the other type of reference point,

the PLTP. Because all the sellers can observe the previous transaction records

from the StubHub website, this might explain why the effect of the PLTPs

is similar across all sellers. This also implies that market experience might
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only eliminate the effects of reference points such as the status quo and not

those such as recent outcomes.

6 Conclusion

In this research, I use the listing prices on StubHub to show that sellers of

sports tickets are affected by two types of reference points: the face values

of the tickets and the PLTPs within the same section of the stadium.

In the dynamic pricing problem for perishable goods, the theoretical

model shows that the listing prices should demonstrate evidence of bunching

at the reference points. The model also predicts that the listing prices set

by sellers with reference-dependent preferences should be higher in the last

few days of the selling period, than those set by sellers without reference-

dependent preferences.

Then, I use the data to show evidence of the bunching of listing prices

at these two types of reference points, and eliminate other possible sources

of this evidence. In addition, I use the structural model to estimate the

parameters of the gain-loss utility, including the loss aversion and diminish-

ing sensitivity parameters. The loss aversion parameter in the benchmark

model is around 3.68 to 4.62, which is close to the estimates in the previous

literature.

To understand the effect of the reference points, I simulate the result for

the case without reference-dependent preferences, which η = 0. Compared

with the actual data, the counterfactual results show that the listing prices

will be lower by around 19.30% on the last day before the game if the sellers
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do not have reference-dependent preferences. Furthermore, the probability

of a typical listing being sold during the last two weeks increases from 0.43

to 0.48.

Based on the types of tickets sellers have, the results indicate that the

sellers who only hold single-game tickets are less likely to be affected by their

face values, compared to those holding package tickets or mixed types of

tickets. However, there is no difference between these two groups regrading

the effect of the PLTPs.

In addition, I use the number of listings in a season to proxy for the size

of each seller, and the results show that the big sellers are less likely to be

affected by the face values of their tickets than the small sellers, which is con-

sistent with the previous literature, which has found that market experience

can eliminate the effects of reference points. However, large and small sellers

are affected by the PLTPs in similar ways, which suggests that market expe-

rience might only eliminate the effects of reference points such as the status

quo, and not the effects of reference points such as recent outcomes.
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Figures and Tables

Figure 1: Simulation of Price Distribution

This figure shows the price distribution simulated using the theoretical model.
The simulation result is based on a time-invariant probability of sale q(p) =
Φ(−p), consumption utility v(p) = log(p), gain-loss parameter η = 1, loss
aversion parameter λ = 2.25, and curvature of the gain-loss utility α = 1,
where Φ(.) is the standard normal cumulative distribution function. The
reference point is assumed to be 1. For the case without a reference point, η
is assumed to be 0. The remaining values follow a chi-squared distribution,
χ2(0.5).
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Figure 2: Simulation of Prices over Time

This figure shows the simulated pattern of prices over time. The simula-
tion results are based on a time-invariant probability of sale q(p) = Φ(−p),
consumption utility v(p) = log(p), gain-loss parameter η = 1, loss aversion
parameter λ = 2.25, and curvature of the gain-loss utility α = 1, where Φ(.)
is the standard normal cumulative distribution function. The reference point
is assumed to be 1. For the seller without a reference point, η is assumed to
be 0. The remaining value is set to 0.01 for both sellers.
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Figure 3: Evidence of Bunching at the Face Values of the Tickets

This histogram shows the evidence of bunching at the face values of the
tickets. I use all the initial listing prices as the sample, and the total number
of initial listing prices is 82,231. The x-axis shows the listing price divided
by the face value. The bin width of the histogram is 0.1. The bottom figure
shows the results of the discontinuity test from McCrary (2008).
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Figure 4: Robustness Test I of the Evidence of Bunching at the Face Value

This figure shows the evidence of bunching at the face value under two cases:
face values ending with round numbers (0 or 5), and face values ending with
other numbers. The discontinuity test results are shown in the bottom panel
of Table 3.
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Figure 5: Robustness Test II of the Evidence of Bunching at the Face Value

This figure shows the evidence of bunching at the face value under two cases:
face values equal to the purchase prices in the primary market, and those
not equal to the purchase prices. The discontinuity test results are shown in
the bottom panel of Table 3.
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Figure 6: Evidence of Bunching at Previous Lowest Transaction Prices

This histogram shows the evidence of bunching at the previous lowest trans-
action prices. The sample consists of all the initial listing prices for which
there is a previous lowest transaction price in the same section of the stadium,
and the total number of listings is 64,279. The bin width of the histogram
is 0.05. The bottom figure shows the results of the discontinuity test from
McCrary (2008).
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Figure 7: Robustness Test of Evidence of Bunching at Previous Lowest Trans-
action Prices

This figure shows the evidence of bunching at the previous lowest transac-
tion prices under two cases: when the previous lowest transaction price is
higher than the face value, and when it is lower than the face value. The
discontinuity test results are shown in the bottom panel of Table 4.
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Figure 8: Estimated Models for the Face Values

Figure (a) shows how the different estimated models fit the data. The blue
lines represent four different estimated results based on different values of ν,
and the orange solid line with asterisks displays the actual data. The blue
dashed line with circles shows the results when ν = 0.6, and is closest to the
true data. Figure (b) presents the listing price distributions from both the
real data (orange) and as predicted by the model with ν = 0.6 (blue).

(a) Listing Prices over Time from Different Estimated Models

(b) Listing Price Distribution When ν = 0.6
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Figure 9: Estimated Models for the Previous Lowest Transaction Prices

Figure (a) shows how the different estimated models fit the data. The blue
lines represent four different estimated results based on different values of ν,
and the orange solid line with asterisks displays the actual data. The blue
dashed line with circles shows the results when ν = 0.6, and is closest to the
true data. Figure (b) presents the listing price distributions from both the
real data (orange) and as predicted by the model with ν = 0.6 (blue).

(a) Listing Prices over Time from Different Estimated Models

(b) Listing Price Distribution When ν = 0.6
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Figure 10: Counterfactual Results I

This figure shows the counterfactual results when the gain-loss utility func-
tion is removed (η = 0). Figure (a) shows the distribution of the listing prices
relative to the face values of the tickets. Figure (b) shows the distribution
of the listing prices relative to the previous lowest transaction prices for the
tickets. The blue bars are from the counterfactual exercise, and the orange
ones are from the real data.

(a) Listing Prices Relative to the Face Values

(b) Listing Prices Relative to the Previous Lowest Transaction Prices
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Figure 11: Counterfactual Results II

This figure shows the counterfactual results when the gain-loss utility func-
tion is removed (η = 0). Figure (a) shows the listing prices over time within
the two weeks before the game. Figure (b) shows the probability of sale each
day prior to the game. The blue line is obtained from the counterfactual
exercise, and the orange one comes from the real data.

(a) Listing Prices Over Time

(b) Probability of Sale
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Table 1: Summary Statistics for Listings on StubHub
This table shows the summary statistics for each listing. The listing data were collected from March 25,
2011 to September 28, 2011. The data include the daily seat information given on the purchase page, such
as the listing price, quantity, row number, and seat number. As some listings were not observed from the
first day of listing, only around 79.65% of the listings have initial listing prices. Row quality is a measure
in which the row number is normalized. A value of one represents the first row in that section of the
stadium; a value of zero represents the last row in that section. Each listing might contain many tickets
(seats), so some listings might only be partly sold.

Obs. Mean Std. Dev Min Median Max

Listing price relative to face value
Initial price ($) 82,231 1.677 0.805 0.185 1.483 7.042
Maximum price ($) 103,245 1.820 0.885 0.185 1.618 7.059
Minimum price ($) 103,245 1.311 0.618 0.0286 1.184 7.059
Average price ($) 103,245 1.657 0.751 0.185 1.491 7.059

Starting date for listing
(days prior to game)

without information 103,245 0.204 0.403 0 0 1
> 100 103,245 0.101 0.301 0 0 1
61 to 100 103,245 0.109 0.312 0 0 1
31 to 60 103,245 0.133 0.340 0 0 1
15 to 30 103,245 0.158 0.365 0 0 1
8 to 14 103,245 0.106 0.307 0 0 1
1 to 7 103,245 0.190 0.392 0 0 1

Purchase price
in the primary market 103,245 0.844 0.123 0.333 0.853 1.294

Face value 103,245 42.62 21.89 12 36 108
Number of seats 103,245 2.737 1.076 1 2 6
Front row dummy 103,245 0.103 0.304 0 0 1
Row quality 103,245 0.559 0.307 0 0.595 1
Distance from seat

to home plate (feet) 103,245 246.5 87.92 72.81 234.3 439.3
Listing periods (days) 103,245 37.72 43.43 1 18 187
Number of price adjustment

for each listing 103,245 1.868 2.558 0 1 68
Sold out or not 103,245 0.390 0.488 0 0 1
Sold partly 103,245 0.406 0.491 0 0 1
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Table 2: Summary Statistics for Sellers on StubHub
This table shows the summary statistics for each identified seller. The information can be separated into
two parts: purchase information from the primary market and resale information on StubHub. Single-
game tickets and package tickets are the two major ticket types in the primary market; those sellers who
purchase both types of tickets or other types of tickets, are listed as others.

Obs. Mean Std. Dev Min Median Max

Primary Market Purchase Information
Types of tickets they have

single-game tickets only 9,664 0.383 0.486 0 0 1
package tickets only 9,664 0.397 0.489 0 0 1
others 9,664 0.220 0.414 0 0 1

Purchase channel
from box office only 9,664 0.442 0.497 0 0 1
from internet only 9,664 0.419 0.493 0 0 1
from both channels 9,664 0.139 0.346 0 0 1

Renewed packages 9,664 0.590 0.492 0 1 1
Number of games purchased 9,664 31.78 31.71 1 20 81
Number of tickets purchased 9,664 139.8 317.0 1 53 9,720
Average number of tickets
purchased in one game 9,664 5.527 25.28 1 3 1,201

StubHub Resale Information
Number of tickets sold 9,664 16.17 78.51 0 2 4,029
Number of games listed 9,664 8.588 14.84 1 2 81
Number of tickets listed 9,664 34.89 137.5 1 7 6,377
Number of listings
in an entire season 9,664 11.59 33.03 1 3 840

Average number of listings
in one game 9,664 1.178 0.887 1 1 27

Average number of tickets
listed in one game 9,664 3.501 5.555 1 2 142.5
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Table 3: Evidence of Bunching at Face Value
Based on the listing and seller information, this table shows the evidence of bunching at the face value of
the ticket in each subgroup. The last column shows the z-statistics for the discontinuity test from McCrary
(2008). The bottom panel shows the robustness results related to Figures 4 and 5.

Number of Percentages of listings with prices relative to face values in

listings [0.7, 0.8) [0.8, 0.9) [0.9, 1.0) [1.0, 1.1) [1.1, 1.2) [1.2, 1.3) z-statistic

All sample 82,231 2.20 4.55 4.58 8.45 7.73 7.70 35.50
Listing Information
Number of tickets

2 48,228 2.45 5.11 5.02 9.07 8.33 8.21 25.57
4 23,091 1.88 3.81 3.91 7.99 7.25 7.06 20.87
others 10,912 1.79 3.69 4.00 6.68 6.06 6.82 10.79

Starting date for listing
(days prior to game)
≥ 100 10,622 0.26 0.99 1.10 3.06 3.80 4.50 10.52
30 to 99 25,609 0.93 2.16 2.69 5.31 5.37 6.77 20.04
15 to 29 15,527 2.38 4.30 4.70 8.60 8.39 8.81 15.49
8 to 14 10,903 2.45 5.56 5.86 11.16 10.29 8.80 14.25
1 to 7 19,570 4.64 9.26 8.11 13.85 10.99 9.17 16.83

Games in
March/April 7,939 1.51 3.48 3.77 10.37 9.85 8.94 17.19
May 9,036 1.77 4.02 4.00 7.97 8.11 7.56 13.62
June 12,314 1.49 3.63 4.76 8.77 8.63 8.46 16.08
July 19,091 1.13 3.97 4.85 8.01 7.65 8.52 18.39
August 22,186 2.34 4.30 4.06 6.27 5.63 6.18 11.68
September/October 11,665 5.26 8.13 5.92 12.04 9.14 7.72 14.22

Face value in
first quartile 22,407 1.04 1.87 2.00 5.22 4.01 5.20 19.89
second quartile 19,760 2.15 3.93 3.81 7.32 8.43 7.75 21.87
third quartile 20,959 2.30 4.64 4.35 9.96 8.37 9.76 24.35
fourth quartile 19,105 3.51 8.26 8.64 11.75 10.64 8.32 8.58

Seller Information
With types of tickets

package only 42,804 2.52 5.53 5.38 10.03 9.22 8.33 26.45
single-game only 9,529 1.37 1.84 2.15 3.43 3.75 4.87 4.81
both types 23,807 2.09 4.39 4.40 8.27 7.23 8.27 17.96
others 6,091 1.71 2.63 3.40 5.91 5.37 5.47 7.14

Number of listings
in an entire season
1-5 10,326 3.20 5.79 4.73 9.94 8.19 7.92 13.80
6-15 13,334 3.39 6.80 5.28 11.03 9.27 9.16 15.58
16-30 11,651 2.81 5.40 5.17 10.41 9.06 8.45 14.79
31-50 11,460 2.49 5.06 5.47 9.51 9.56 8.81 12.44
51-75 11,459 1.88 5.04 5.86 10.17 8.51 8.40 10.90
76-150 11,499 1.23 2.71 3.80 6.17 6.33 7.23 13.09
≥ 150 12,502 0.48 1.13 1.87 2.18 3.33 4.05 0.97

Purchase channel
from box office only 29,259 2.31 5.25 5.12 9.54 8.55 7.80 21.10
from internet only 28,666 2.43 4.66 4.24 8.22 7.63 7.48 21.14
both channels 24,306 1.80 3.59 4.32 7.41 6.85 7.84 18.47

Robustness check
Face value

no round numbers 61,343 2.14 4.21 4.68 7.93 7.42 7.03 27.83
round numbers 20,888 2.39 5.57 4.28 9.97 8.62 9.66 24.71

equal to
purchase price 12,100 0.81 1.07 1.52 2.76 3.28 4.43 6.30

not equal to
purchase price 70,131 2.44 5.16 5.10 9.43 8.49 8.26 32.70
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Table 4: Evidence of Bunching at Previous Lowest Transaction Price
Based on the listing and seller information, this table shows the evidence of bunching at the previous lowest
transaction prices (PLTPs) in each subgroup. The last column shows the z-statistics for the discontinuity
test from McCrary (2008). The bottom panel shows the robustness results related to Figure 7.

Number of Percentages of listings with prices relative to PLTP in

listings [0.7, 0.8) [0.8, 0.9) [0.9, 1.0) [1.0, 1.1) [1.1, 1.2) [1.2, 1.3) z-statistic

All sample 64,279 3.56 5.94 7.35 12.07 10.57 10.48 29.92
Listing Information
Number of tickets

2 38,484 3.79 6.21 7.68 12.88 11.18 10.82 24.21
4 17,467 2.94 5.34 6.61 10.64 10.00 10.37 13.77
others 8,328 3.77 5.96 7.40 11.36 8.91 9.19 8.89

Starting date for listing
(days prior to game)
≥ 100 5,225 2.35 4.78 7.85 12.44 10.47 9.13 7.44
30 to 99 18,267 4.12 6.47 8.03 11.53 10.32 9.69 10.89
15 to 29 12,732 3.77 6.33 7.52 12.39 10.77 10.05 12.59
8 to 14 9,711 3.35 5.87 6.69 13.28 11.09 11.63 14.72
1 to 7 18,344 3.30 5.50 6.77 11.64 10.42 11.36 17.64

Games in
March/April 6,545 3.07 4.95 7.18 13.00 11.83 11.55 10.54
May 7,628 3.89 6.35 8.09 12.91 10.87 11.23 9.52
June 10,511 4.66 7.53 8.65 12.99 11.45 9.41 10.19
July 15,605 3.30 5.47 7.04 12.02 11.03 11.07 15.22
August 17,879 2.82 5.18 6.82 11.39 9.31 10.55 14.68
September/October 6,111 4.57 7.15 6.74 10.59 9.79 8.54 7.89

Face value
first quartile 16,248 3.17 4.54 5.58 9.26 8.06 9.38 15.64
second quartile 19,033 4.07 6.58 7.57 11.93 10.56 10.19 15.38
third quartile 14,887 2.33 5.13 6.93 12.80 11.51 11.14 15.52
fourth quartile 14,111 4.61 7.53 9.55 14.74 12.47 11.46 13.32

Seller Information
With types of tickets

only package 33,573 3.85 6.20 7.27 12.67 10.90 10.40 23.47
only single-game 7,155 3.51 4.84 7.02 10.03 9.88 9.95 7.65
both package

and single-game 19,038 3.16 5.85 7.19 11.46 10.18 10.95 14.46
others 4,513 3.17 6.14 9.13 13.45 10.84 9.99 6.59

Number of listings
in an entire season
1-5 8,659 3.34 5.57 6.55 11.70 9.76 10.67 12.18
6-15 10,942 3.87 6.43 7.61 13.03 11.05 10.83 13.55
16-30 9,204 3.76 6.58 8.59 13.44 10.58 10.32 10.81
31-50 8,889 4.34 7.26 7.71 13.16 11.63 10.78 11.39
51-75 9,094 3.31 5.95 7.73 13.69 11.71 11.15 12.30
76-150 8,755 3.35 5.49 7.14 9.73 9.59 10.21 6.44
≥ 150 8,736 2.85 4.10 5.96 9.35 9.44 9.32 8.68

Purchase channel
only from box office 22,799 3.76 6.35 7.55 12.76 10.75 10.58 18.48
only from internet 22,621 3.55 5.88 7.12 12.08 10.77 10.59 18.09
both box office

and internet 18,859 3.32 5.51 7.38 11.24 10.10 10.24 13.37

Robustness Check
Previous Lowest

Transaction Prices
higher than face value 41,971 4.82 7.48 9.04 13.24 10.89 10.00 19.45
lower than face value 20,334 1.15 2.95 4.14 9.69 9.90 11.16 27.13
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Table 5: Estimates for Probability of Sale
This table shows the estimates for the probability of sale. The first column displays the results of the
probit model with exogenous listing prices, and the second column presents the results from equations
(8) and (9). The first-stage results from equation (9) are shown in Table 6. Standard errors are given in
brackets. The symbols ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

(1) (2)
Probit IV Probit

Listing prices relative to face values -0.8765*** -1.0530***
[0.0072] [0.0399]

Distance from seat to home plate (feet) -0.0041*** -0.0046***
[0.0001] [0.0001]

Row quality 0.4092*** 0.4583***
[0.0092] [0.0143]

Relative to number of seats = 2
Number of seats = 1 -0.4409*** -0.4782***

[0.0133] [0.0157]
Number of seats = 3 0.0843*** 0.1148***

[0.0086] [0.0109]
Number of seats = 4 0.0766*** 0.0846***

[0.0057] [0.0060]
Number of seats = 5 0.2515*** 0.3037***

[0.0171] [0.0207]
Number of seats = 6 0.0432** 0.0887***

[0.0184] [0.0208]
Competition coefficients:
Dummy variable for competing listings -0.0597*** -0.2492***

[0.0127] [0.0433]
Number of competing listings, log(N+1) -0.0238*** -0.0574***

[0.0059] [0.0094]
Mean price for competing listings 0.0962*** 0.1715***

[0.0050] [0.0173]
Proportion of higher row quality seats -0.2165*** -0.2032***

[0.0077] [0.0082]
Whether the listing has the lowest price 0.2958*** 0.3122***

[0.0105] [0.0111]
Proportion of listings with lower prices -0.3723*** -0.0921

[0.0223] [0.0648]
Coefficients on residuals from the first stage 0.1824***

[0.0398]
Constant 1.4231*** 1.8819***

[0.0354] [0.1074]

Observations 3,858,510 3,858,510
Log-Likelihood -334335.073 -332937.755
Game fixed effects Yes Yes
Day prior to the game dummies Yes Yes
Seat area fixed effects Yes Yes
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Table 6: Regression on Instruments
This table shows the first-stage results from equation (9). The dependent variable is the listing price,
and the regressors include all the exogenous variables in the main equation (8), and all the instruments.
Robust standard errors given in brackets are clustered at the listing level. The symbols ***, **, and *
indicate significance at the 1%, 5%, and 10% levels, respectively.

(1)
Listing Prices

Purchase channel:
relative to those from both channels,
only from box office -0.0371***

(0.00546)
only from internet -0.0325***

(0.00586)
Starting date for listings (Days prior to game):
relative to those without starting date information,
≥ 100 -0.0105

(0.00645)
61 to 100 -0.0719***

(0.00566)
31 to 60 -0.129***

(0.00490)
15 to 30 -0.142***

(0.00469)
8 to 14 -0.121***

(0.00500)
1 to 7 -0.122***

(0.00473)
Types of tickets:
relative to those have mixed types,
only have single-game tickets 0.0647***

(0.00785)
only have package tickets 0.0520***

(0.00523)
Constant 2.614***

(0.0230)

Observations 3,858,510
R-squared 0.664
Game fixed effects Yes
Day prior to the game dummies Yes
Seat area fixed effects Yes
Other control in the main equation Yes
F-test 159.35
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Table 7: Estimates for Parameters of the Game-Loss Utility
This table shows the results of the second-stage estimation, based on different levels of ν. In the top
panel, I assume that sellers treat the face values of their tickets as their reference points. In the bottom
panel, sellers are assumed to treat the previous lowest transaction prices for their tickets as their reference
points. Standard errors given in brackets are from bootstrapping across listings. The symbols ***, **,
and * indicate significance at the 1%, 5%, and 10% levels, respectively.

Mean of the remaining value (ν)

0.2 0.4 0.6 0.8

Face values
Curvature of the gain-loss utility (α) 0.2894* 0.3715*** 0.4416*** 0.5316***

[0.1697] [0.0150] [0.0684] [0.0139]
Loss aversion parameter (λ) 13.1125 6.7008*** 4.6169*** 3.4295***

[22.8019] [2.4380] [1.2799] [0.3757]

Previous lowest transaction prices
Curvature of the gain-loss utility (α) 0.3185*** 0.3946*** 0.4788*** 0.5023***

[0.0116] [0.0172] [0.0437] [0.0178]
Loss aversion parameter (λ) 12.0387*** 5.9804*** 3.6829*** 3.1558***

[3.1469] [1.4499] [0.7474] [0.3381]
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Table 8: Estimates by Type of Ticket
This table shows the results of the second-stage estimation, based on different samples. According to the
types of tickets sellers have, I split the sample into three subsamples: sellers with single-game tickets only,
sellers with package tickets only, and other sellers. I assume that the mean of the remaining value is equal
to 0.6. In the top panel, I assume that sellers treat the face values of their tickets as their reference points.
In the bottom panel, sellers are assumed to treat the previous lowest transaction prices for their tickets
as their reference points. Standard errors given in brackets are from bootstrapping across listings. The
symbols ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

Type of Ticket

All sample single-game package mixed or others

Face values
Curvature of the gain-loss utility (α) 0.4416*** 0.3790*** 0.4645*** 0.4937***

[0.0684] [0.0295] [0.0635] [0.0425]
Loss aversion parameter (λ) 4.6169*** 2.7416*** 4.9179*** 4.6316***

[1.2799] [0.5584] [1.7385] [1.2938]

Previous lowest transaction prices
Curvature of the gain-loss utility (α) 0.4788*** 0.4225*** 0.4871*** 0.4516***

[0.0437] [0.0116] [0.0568] [0.0162]
Loss aversion parameter (λ) 3.6829*** 3.3487*** 3.3573*** 3.8720***

[0.7474] [0.4984] [0.9710] [0.5932]
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Table 9: Estimates by Size of Seller
This table shows the results of the second-stage estimation, based on different samples. I split the listing
data into four groups, Q1, Q2, Q3, and Q4, based on the quartiles of the number of listings per seller. The
first group (Q1) contains sellers with fewer than 8 listings in a season. The second (Q2) and third (Q3)
groups contain sellers with between 8 and 24, and between 24 and 61, listings respectively. The fourth
group (Q4) contains sellers with more than 61 listings in a season. To further focus on the big sellers,
the last column shows the results for sellers with more than 150 listings in a season. I assume that the
mean of the remaining value is equal to 0.6. In the top panel, I assume that sellers treat the face values
of their tickets as their reference points. In the bottom panel, sellers are assumed to treat the previous
lowest transaction prices for their tickets as reference points. Standard errors given in brackets are from
bootstrapping across listings. The symbols ***, **, and * indicate significance at the 1%, 5%, and 10%
levels, respectively.

Number of Listings Number of

All sample Q1 Q2 Q3 Q4 listings ≥ 150

Face values
Curvature of the gain-loss utility (α) 0.4416*** 0.4548*** 0.4864*** 0.5217*** 0.4328*** 0.4225***

[0.0684] [0.0743] [0.0472] [0.0521] [0.0194] [0.0127]
Loss aversion parameter (λ) 4.6169*** 4.0585*** 6.1258*** 5.7602*** 2.9701*** 1.8672***

[1.2799] [1.2800] [1.5709] [1.7261] [0.9018] [0.4801]

Previous lowest transaction prices
Curvature of the gain-loss utility (α) 0.4788*** 0.4506*** 0.4968*** 0.5011*** 0.3815***

[0.0437] [0.0276] [0.0388] [0.0517] [0.0196]
Loss aversion parameter (λ) 3.6829*** 3.8648*** 3.5985*** 3.7036*** 3.5359***

[0.7474] [0.8292] [0.5223] [0.9131] [0.2972]
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A Appendices

A.1 Sensitivity Test for Theoretical Framework

This section presents the sensitivity tests of some important parameters of

the theoretical model described in Section 2. To investigate how the impor-

tant parameters affect the simulation result, I simulate the results based on

different loss aversion parameters λ and diminishing sensitivity parameters

α.

Figure A1 shows the results based on loss aversion parameters of λ = 2.25

and λ = 4.25. For a larger loss aversion parameter, the discontinuity in the

distribution is larger, so that the evidence of bunching is more significant. For

the listing prices over time, the blue line with circles sticks at the reference

point during more periods. Also, on the last day before the game, based on

the same remaining value, a seller with a larger loss aversion parameter is

more likely to choose a higher listing price.

Besides the loss aversion parameter λ, the curvature of the gain-loss util-

ity, α, also called the diminishing sensitivity parameter, also plays an impor-

tant role in the behavior of the sellers. Figure A2 shows the results based

on diminishing sensitivity parameters of α = 1, α = 0.7, and α = 0.4. This

parameter makes the function concave over gains and convex over losses;

therefore, the seller is more reluctant to choose a price a little bit lower than

the reference point. Also, it creates a smooth curvature of the price pattern

in the gain domain, and a sharp decrease in the price in the loss domain. For

a smaller α, the evidence of bunching in the distribution is sharper.
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Appendix Figures

Figure A1: Sensitivity Test of λ

This figure shows the results of the sensitivity test of λ. The simulation
result is based on a time-invariant probability of sale q(p) = Φ(−p), con-
sumption utility v(p) = log(p), gain-loss parameter η = 1, and curvature of
the gain-loss utility α = 1, where Φ(.) is the standard normal cumulative
distribution function. The loss aversion parameters are set to λ = 2.25 and
λ = 4.25. The reference point is 1. For simulating the price distribution, the
remaining values are assumed to follow a chi-squared distribution, χ2(0.5).
For simulating the price pattern over time, the remaining value is set to 0.01.
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Figure A2: Sensitivity Test of α

This figure shows the results of the sensitivity test of α. The simulation result
is based on a time-invariant probability of sale q(p) = Φ(−p), consumption
utility v(p) = log(p), gain-loss parameter η = 1, and loss aversion parameter
λ = 2.25, where Φ(.) is the standard normal cumulative distribution function.
The curvature of the gain-loss utility is set to different values. The reference
point is 1. For simulating the price distribution, the remaining values are
assumed to follow a chi-squared distribution, χ2(0.5). For simulating the
price pattern over time, the remaining value is set to 0.01.
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